A Brief Introduction to Python
Part |

Wei Tianwen

2017

A Brief
Introduction to
Python
Part |

Wei Tianwen

A Brief

Table of contents e s
i)
Wei Tianwen

@ Basics

Elementary types

Loops

Control flow

Functions

Module: math

@ Object Oriented Programming
Example: Student
Example: Point
Example: Matrix
Class: list
Class: tuple
Class: dict

Integers and floats

Integer int and float float are elementary numeric types in
Python.

e integer

>>> a=1

>>> a

]

>>> type(a)
<class 'int'>

A Brief
Introduction to
Python
Part |

Ti

Elementary types

A Brief

Integers and floats inrducton t
ython
Part |

. . Wei Tia
Integer int and float float are elementary numeric types in

Python.

Elementary types
e integer

>>> a=1

>>> a

]

>>> type(a)
<class 'int'>

e float

>>> b=2.5

>>> b

2.5

>>> type(b)
<class 'float'>

Integers and floats

Integer int and float float are elementary numeric types in
Python.

e integer

>>> a=1

>>> a

]

>>> type(a)
<class 'int'>

e float
>>> b=2.5
>>> b
2.5
>>> type(b)
<class 'float'>
e Note that to create a float type of number “1”, we need
to type b=1.0 or b=1. instead of b=1. Integer “1" and
float “1.0" are different in Python.

A Brief
Introduction to
Python
Part |

Wei Tianwen

Oriented
mming

A Brief

ArlthmetIC Operatlons Introduction to

Python
Part |

Ti

Operations Maths expression | Python expression

addition x+y X +y pme s
subtraction X—y X -y

multiplication XXy X *y

division Xty x/y

power xY X ** y

Those operations introduced above accept integer and/or

float as input.

>>> 2+4 # the output is an integer
6

>>> 2.0+4 # the output is a float
6.0

A Brief

St rl ng Introduction to

Python

String str, i.e. a sequence of characters, is also an
elementary type in Python.

>>> ¢='This is a string'
>>> ¢ Elementary types
'This is a string'
>>> type(c)

<class 'str'>

String

String str, i.e. a sequence of characters, is also an
elementary type in Python.

>>> ¢='This is a string'
>>> ¢

'This is a string'

>>> type(c)

<class 'str'>

In Python, it is very convenient to manipulate strings. We
can use function len() to obtain the number of characters
contained in a string:

>>> x="hello, world!"”

>>> X

'hello, world!'

>>> len(x)
I3

A Brief
Introduction to
Python
Part |

Wei Tia

String

A Brief
Introduction to
Python

String str, i.e. a sequence of characters, is also an el
Wei Tia

elementary type in Python.

>>>
>>>

c='This is a string'
c

'This is a string'

>>>

type(c)

<class 'str'>

In Python, it is very convenient to manipulate strings. We
can use function len() to obtain the number of characters

contained in a string:

>>>
>>>

x="hello, world!”
X

'hello, world!'

>>>
13

len(x)

We can also do string arithmetics:

>>>
>>>
>>>
"My
>>>
>>>

x="My name is "

y="Wei Tianwen.”

x+y

name is Wei Tianwen.'
z="Python is very popular. "
z%3

'Python is very popular. Python is very popular. Python is very

popular.

Exercise

Exercise 1.1

@ Evaluate the following expressions using python:

(3.14 +5)3
128

® Create a string that consists of your favorite English
phrase repeated 10 times

A Brief
Introduction to
Python
Part |

Wei Tianwen

A Brief

I_ | St Introduction to

Python

List 1ist is a type that can be used to bundle stuff
together. We can create a list using bracket [...1:

Elementary types

>>> a=[1,2,3,4,5] # we can use list to create an array

>>> a

[1, 2, 3, 4, 5]

>>> type(a)

<class 'list'>

>>>

>>> b=[2, 7.139, 'hello'] # the elements may be of different types
>>> b

[2, 7.139, 'hello'l

. A Brief
I_ | St Introduction to
Python
Part

List 1ist is a type that can be used to bundle stuff 0 T
together. We can create a list using bracket [...1:

>>> a=[1,2,3,4,5] # we can use list to create an array

>>> a

[1, 2, 3, 4, 5]

>>> type(a)

<class 'list'>

>>>

>>> b=[2, 7.139, 'hello'] # the elements may be of different types
>>> b

[2, 7.139, 'hello'l

Function 1len() also returns the length of a list, i.e. the
number of elements contained in a list:

>>> len(a)

5]

>>> len(b)

3

>>> c=a+b # the "sum" of two lists

>>> ¢

[1, 2, 3, 4, 5, 2, 7.139, 'hello']

>>> len(c)

8

>>> c*x2 # list "multiplied” by an integer
[1, 2, 3, 4, 5, 2, 7.139, 'hello', 1, 2, 3, 4, 5, 2, 7.139, 'hello']

= . A Brief
SllCl ng Introduction to

. Python

To access the elements of a list, we also use brackets [1]. Part |

Basically, to access the n-th element of a list mylist , we use
mylist[n-1] :

Elementary types

>>> b=[2, 7.139, 'hello'] # b is a list that contains 3 elements

>>> pl[o] # the first element in b

2

>>> b[1] # the second element

7.139

>>> b[2] # the third element Object Oriented
"hello"’ ramming
>>> b[3] # trying to access the fourth element results in an error

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

Slicing
To access the elements of a list, we also use brackets [1.
Basically, to access the n-th element of a list mylist , we use
mylist[n-1] :

>>> b=[2, 7.139, 'hello'] # b is a list that contains 3 elements

>>> pl[o] # the first element in b

2

>>> b[1] # the second element

7.139

>>> b[2] # the third element

'hello"

>>> b[3] # trying to access the fourth element results in an error

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

As is shown above, the index must be smaller than the
length of the list. What about negative indices?

>>> a=[1,2,3,4,5]

>>> al[-1] # the last element of the list
5

>>> a[-2] # the element before the last element of the list
4

>>> a[-5] # the first element of a

1

>>> al[-6] # error

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

A Brief
Introduction to
Python
Part |

Wei Tiany

Elementary types

. A Brief
N eSted I |St Introduction to
Python
Part

Wei Ti

The elements contained in a list can be anything. :
Elementary types

>>> al=[1,2,3,4]

>>> a2=[5,6,7,8]

>>> a3=[9,10,11,12]

>>> A=[al,a2,a3]

>>> A

[c1, 2, 3, 41, 5, 6, 7, 81, [9, 10, 11, 1211

>>> type(A)

<class 'list'>

>>> len(A) # A is a list containing 3 elements

3

>>> A[2]

[9, 10, 11, 121

>>> len(A[2]) # A[2] is a list containing 4 elements

4

>>> A[2][1] # Accessing element of A[2]

10

The list of lists can be used to represent a multi-dimensional
array. We will look into that matter later.

Exercise

Exercise 1.2

@ Assume that z is a list consisting of even integers
between 0 and 100, i.e. z=[2,4,...,98,100]. Find
indices n1 and ny so that z[n1] = z[n2] = 66.

A Brief
Introduction to
Python
Part |

Wei Tianwen

A Brief

EXG I’CISG Introduction to

Python

Exercise 1.2

@ Assume that z is a list consisting of even integers
between 0 and 100, i.e. z=[2,4,...,98,100]. Find
indices n1 and ny so that z[n1] = z[n2] = 66.

>>> z=list(range(2,101,2)) # generate list

>>> z

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100]

>>> z=list(range(2,101,2))

>>> z[32]

>>> z[-18]
66

A Brief

EXG I’CISG Introduction to

Python
Part |

Wei Tianwen
Exercise 1.3
Create the following matrices using Python list:

wWw N =

w N =

wWw N
R R R R R
N NN DNDNDDN
wW w wwww

Exercise

Exercise 1.3
Create the following matrices using Python list:

W N =
wWw N =
W N =
wWw N
H R R R R~
N NN DNDNDDN
wW w wwww

>>> A=[[1]%6, [2]1x6, [3]1x6]

>>> A

ccr, 1, 1, 1, 1, 11, [2, 2, 2, 2, 2, 21, [3, 3, 3, 3, 3, 311

>>> B=[[1,2,3]1]1*6

>>> B

Cri, 2, 31, [, 2, 31, [, 2, 31, L1, 2, 31, [, 2, 31, [, 2, 3]]

A Brief
Introduction to
Python
Part |

Ti

Elementary types

A Brief

FOI’ |OOp Introduction to

Python
Part |

Assume now we want to calculate the sum

100
>
n2

n=1
using in Python. The following snippet using a “for" loop
can achieve this:
s =0 # initialize a variable that stores the partial sum
for n in range(100): # do not forget the colon

v = 1/(n+1)*%2

s = s + v # update the partial sum
print(s) # print result

From the snippet above, we remark that in Python it is the
indentation of expressions that determines which part of the
code is in the for loop. This is a unique features of Python

compared to other popular programming languages.

Indentation

X No indentation
for n in range(100):

v = 1/(n+1)*x*x2
s = s + v

X Inconsistent indentations
for n in range(100):

v = 1/(n+1)**2
s = s +v

v Consistent indentations

v 1/(n+1) *%2

for n in range(100):
s =s +v

In Python, the size of the indentation does not matter, so
long as the indentations are consistent.

A Brief
Introduction to
Python
Part

Wei Tia

A Brief
FOI’ |OOp Introduction to
Python
Part

Wei Tia
What if we want to calculate

Z¢
i=1

for z1,...,z, stored in a Python list ? One solution is the
following:

i iterates from i=0 to i=len(z)-1 (inclusive)
for i in range(len(z)):

v 1/z[i]**2

s s + v

There is also a more elegant solution:

i iterates from i=z[@] to i=z[-1] (inclusive)
for i in z:

v = 1/i%%2

s =s +v

See the difference?

Nested loop

Assume we have a matrix represented by a list:

>>> A=[[1,4,5,6], [-3,5,2,1], [8,9,0,2]]
>>> A
CC1, 4, 5, 61, [=3, 5, 2, 11, [8, 9, @, 211

and we want to calculate the sum of squares of the elements
of A. This can be achieved by using a nested for loop:

s =0
for i in range(len(A)): # outer loop
for j in range(len(A[@])): # inner loop
v = A[i1[jI**2
s = s + v

A Brief
Introduction to
Python
Part |

Wei Tia

. . A Brief

Indentation continued inrducton t
ython
Part

Indentation in Python is something to be taken care of. The Wei Tia
following codes throw an error due to incorrect use of
indentation:

X First line should not be indented

for i in range(len(A)):

for j in range(len(A[@])):
v = A[i1[jIx*2
s =s +v

X The second loop contains no block

for i in range(len(A)):
for j in range(len(A[0])):
v = A[i1[jIx*2

s =s +v

X Inconsistent indentation

for i in range(len(A)):
for j in range(len(AL[0])):
v = ALiI[j1x%2
s =s +vV

Function range()

In the snippet above we used function range() . This
function returns a Python iterator that we shall speak of
later. For know it suffices to knows that:

e range(n) behaves like list [0,1,...,n-11;
e range(n, m) behaves like list [n,n+1,...,m-1]
e range(n, m, s) behaves like list [n,n+s,...,n+rs] for

the maximum r such that n 4+ rs < m.

A Brief
Introduction to
Python
Part |

Wei Tianwen

rief

Boolean value Intradiatin 6o
Python
Part |

WWEREE
In Python boolean values are True and False . Check this:

>>> 2 > 3
False

>>> 2 > 1

True

>>> x = True
>>> type(x)
<class 'bool'>
>>> y = False
>>> type(y)
<class 'bool'>

Control flow

Note that only True and False are boolean values. They
are reserved keywords. Python does not recognize TRUE ,
FALSE , true or false.

>>> z = true

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'true' is not defined

Boolean algebra

The boolean algebra in Python is straightforward:

Maths expression

Python expression

A and B ANB A and B
AorB AUB A or B
complement of A Ac not A

Example:

>>> x = 2

>>> x > 1 and x < 5
True

>>> not x > 1

False

>>> x > 1 or x < -1
True

A Brief
Introduction to
Python

Ti

Control flow

Functions

In Python functions are defined via the keyword def and
return .

e The following function accept a list as input and returns
the sum of squares of the elements of the list.

>>> def myfunl(x):
s =0
for i in x:
S += i*%x2
return s

>>> myfuni([1,2,3])
14

A Brief
Introduction to
Python
Part

Ti

Functions

Functions

In Python functions are defined via the keyword def and
return .

e The following function accept a list as input and returns
the sum of squares of the elements of the list.

>>> def myfunl(x):
s =0
for i in x:
s += 1*x*2
return s

>>> myfuni([1,2,3])
14

e The following function accept two numbers as input
and returns the larger of the two.

>>> def myfun2(x, y):
5 if x >= y:
return x;
clse@s
return y

>>> myfun2(3, 5)
5

A Brief
Introduction to
Python
Part

WWEREE

Functions

A Brief

Function with default arguments Introcuction to

Python

Ti

In the definition of a function, we may specify the default
value for one or more input arguments.

Functions
>>> def myfun3(x, y=0): # the default value of y is set to be zero
if x >= y:
return x;
else@s
return y

;;; myfun3(2) # max{2, 0}=2

2

>>> myfun3(-5) # max{-5, 0}=0

)

When only one argument is provided, i.e. myfun3(2) , Python

assumes that the input 2 is for x not for y.

A Brief

FU nCtlon Varlable Introduction to

Python

Function function is a type in Python, just like int or
list .

>>> fun = myfun3 # function myfun3 is attributed to variable 'fun'
>>> type(fun)

<class 'function'>

>>> fun(2, 5) # 'fun' is the same as 'mufun3'

>>> 5

Functions

A Brief

FUﬂCtIOﬂ Varlable Introduction to

Python
Part

Wei Tia
Function function is a type in Python, just like int or
list .

>>> fun = myfun3 # function myfun3 is attributed to variable 'fun
>>> type(fun)

<class 'function'>

>>> fun(2, 5) # 'fun' is the same as 'mufun3'

>>> 5

Functions

Attention: naming conflict may occur when the name of
your function coincides with some existing name.

>>> max (1,4,-2,9) # max is a buit-in function of Python

9

>>> max = myfun3 # now the name 'max' points to myfun3
>>> max (1,4) # myfun3 only accepts 2 input arguments

4

>>> max(1,4,-2,9) # when feed 4 arguments it throws an error
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: max() takes 2 positional arguments but 4 were given

A Brief

M Od u |e math Introduction to

Python

Python provides many predefined maths functions. Those
functions are contained in math module. To use them, you
need to enter explicitly import math .

Module: math

>>> log(1) # Python does not recognize the name 'log'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'log' is not defined
>>> import math # declare that you will use math module
>>> math.log(1)
0.0

I\/Iodule: math

Python provides many predefined maths functions. Those
functions are contained in math module. To use them, you
need to enter explicitly import math .

>>> log(1) # Python does not recognize the name 'log'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'log' is not defined
>>> import math # declare that you will use math module
>>> math.log(1)
0.0

You may find that using math.log() is cumbersome. Can’t
we just type log() ?

>>> from math import log # this way we can use log() directly
>>> log (1)
0.0

A Brief
Introduction to
Python
Part |

Wei Tia

Module: math

A Brief

FUﬂCtIOﬂS and COﬂStantS |n math Introduction to
Python
In math module, there are not only basic functions such as Part |

Ti

log, exp, sqrt, sin, tan, etc, there are also
mathematical constant pi and e . For instance:

>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045 Module: math

. . A Brief
Functions and Constants in math Introduction to

Python

In math module, there are not only basic functions such as Part |

Wei Ti

log, exp, sqrt, sin, tan, etc, there are also
mathematical constant pi and e . For instance:

>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045

If you are too lazy to type math. each time you use a
function or constant in math module, there is a way to make
your life easier.

>>> from math import * # no need to type 'math.' anymore
>>> pi

3.141592653589793

>>> e

2.718281828459045

>>> sin(pi)

1.2246467991473532e-16

>>> log(e)

1.0

This convenience comes at a price: higher risk of naming
conflict. Therefore it is not advocated by expert
programmers.

Exercise 1.4
Define the following function:

1 —(x=p)?

fx,p,0) = \/ﬁe 202,

where ;1 = 0 and o = 1 are default values for p and o.

A Brief
Introduction to
Python
Part |

Wei T

Module: math

A Brief
Introduction to
Python

Exercise 1.4
Define the following function:

1 —(x=p)?

f(X7M7U) = \/ﬁe 202

where ;1 = 0 and o = 1 are default values for p and o.

Module: math

Solution:

from math import pi, exp, sqrt
def gaussian(x, mu=0, sigma=1):
c = 1/sqrt(2xpi*sigma**2)
p = -(x-mu)**2 / (2xsigma*x2)
return c * exp(p)

To validate the result, try:

>>> gaussian(0)
0.3989422804014327

>>> gaussian(1, 0.5, 2)
0.19333405840142462

Object Oriented Programming

e Thus far we have learned Python's built-in types, such
as int, float, str and list, and we will encounter
several more in near future.

e Although Python provides a number of different
predefined types that serve various purposes, those types
cannot cope with all needs in applications. For instance,
there is no predefined “matrix” type in Python, while
matrix is a fundamental concept in scientific computing.

e Fortunately Python allows us to define our own “types”,
or “classes’. This provides great flexibility and is a huge
advantage in practice. We say Python is a Object
Oriented Programming (OOP) language because of
this feature.

e As a matter of fact, everything in Python is an object of
a certain class.

A Brief
Introduction to
Python
Part |

Wei Tianwen

Object Oriented
Programming

A Brief

EXample Student Introduction to
Python
Let us begin with the simplest example. Part |

Wei Ti

class Student:
def __init__(self, n, g):
self.name = n
self.grade = g

def info(self):
print(”Student name: ", self.name)

The code above defines a “Student” class. Now try:

>>> x = Student('Han Meimei', 2013) Example: Student
>>> x.name
'Han Meimei
>>> x.grade
2013

>>> x.info ()

Student name: Han Meimei

A Brief

EXample Student Introduction to
Python
Let us begin with the simplest example. Part |

Wei Ti

class Student:
def __init__(self, n, g):
self.name = n
self.grade = g

def info(self):
print(”Student name: ", self.name)

- i ”
The code above defines a “Student” class. Now try:
>>> x = Student('Han Meimei', 2013) Example: Student
>>> x.name
'Han Meimei'
>>> x.grade
2013
>>> x.info ()
Student name: Han Meimei

Using the OOP jargon, we say
e x is an instance or object of class “Student”.
e name and grade are attributes of class “Student”.
e info() and __init__() are methods of class “Student”.

e __init__() is a special method called the constructor.

Exercise 2.1

e Create an instance of Student that describes yourself.

e Add another attribute called year to the class Student
that stores the year of birth of the student.

e Add another method called age() that print and then
return the age of the student.

A Brief
Introduction to
Python
Part |

Wei Tianwen

Solution:

class

Student:

def __init__(self, n, g, y):

self.name = n
self.grade = g
self.year =y # attribute 'year' added

def info(self):

print(”Student name: self.name)

def age(self, this_year): # method 'age()' added

>>> X
>>> x.
1995

>>> x.

age = this_year - self.year

print("Current age: , age)
return age

= Student('Han Meimei', 2013, 1995)
year

age (2017)

Current age: 22

A Brief
Introduction to
Python
Part

WWEREEY

Example: Student

A Brief

EXerC|Se 22 Introduction to
Define a class named Point , such that: Ak

e Its constructor accepts two inputs px and py , which Wei Tianwen
are the coordinates of the point to be constructed.

e |t has two attributes x and y, storing respectively the
x-axis and y-axis coordinate.

e It has a method named 1ength() , which returns the
distance from the point to the origin.

Example: Point

. A Brief
EXe rcise 2 . 2 Introduction to

Python
Part

Define a class named Point , such that:

e Its constructor accepts two inputs px and py , which Wei Tia
are the coordinates of the point to be constructed.

e |t has two attributes x and y, storing respectively the
x-axis and y-axis coordinate.

e It has a method named 1ength() , which returns the
distance from the point to the origin.

Example: Point
import math
class Point:
def __init__(self, px, py):
self.x = px
self.y = py
def length(self):
return math.sqrt(self.x**x2 + self.y#*%2)

Now try:

>>> a = Point(2,5)
>>> a.x

2

>>> a.y

5

>>> a.length()
5.385164807134504

. e A Brief
Deflne addltlon]COF Point Introduction to
. Python
Assume now we have two Point objects: Part |
>>> a = Point(2, 5) Nei Ti
>>> b = Point(1,-3)

Let us check out what a + b gives:

>>> a + b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Point' and 'Point'

Example: Point

Define addition for point
Assume now we have two Point objects:

>>> a
>>> b

Point (2, 5)
Point (1, -3)

Let us check out what a + b gives:
>>> a + b
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Point' and 'Point'

It turns out that addition “+" is not defined for Point
objects. But we can tell Python what to do with “Point +
Point” arithmetic.

add the following method to Point class

def __add__(self, other): # define '+' for points
s = Point(self.x + other.x, self.y + other.y)
return s

Now we have

>>>c =a+b

>>> type(c)

<class '__main__.Point'>
>>> c.x

B]

>>> c.y

2

A Brief
Introduction to
Python
Part

WWEREE

Example: Point

Operator overloading

Operator | Function ‘ Description
+ __add___ (self, other) addition
- __sub_ (self, other) subtraction
* __mul__ (self, other) multiplication

/ _:truediv__(self, other)

division

A Brief
Introduction to
Python
Part |

Wei Tianwen

. rief

Example: Matrix o s
Python
Part |

. Wei Tianwen
Exercise 2.3

Let us try to define a Matrix class. In this exercise, we
consider only 2 x 2 square matrix.

@ Write an appropriate constructor. During construction,
store the matrix elements in some class attributes.

® Write a method named show() that print the elements
of the matrix.

© Write a method named det() that return the
determinant of the matrix.

® Write a method named inv() that return the inverse of
the matrix. If the matrix is singular, print a phrase
indicating the singularity of the matrix and then return

None .

@ Define multiplication * for matrices.

A Brief

) Introduction to
class Matrix: Python

def __init__(self, x): # we assume x looks like [[1,2],[3,4]] Part |
self.data = x

ei Tian

Example: Matrix

class Matrix:
def __init__(self, x): # we assume x looks like [[1,2],[3,4]]
self.data = x

def show(self): # print the first row, then the second row
print(self.data[@][0], self.datalel[1])
print(self.data[1][@], self.datal1][1])

A Brief
Introduction to
Python
Part

ei Tian

Example: Matrix

A Brief

) Introduction to
class Matrix: Python

def __init__(self, x): # we assume x looks like [[1,2],[3,4]] Part |
self.data = x

ei Tia

def show(self): # print the first row, then the second row
print(self.data[@][0], self.datalel[1])
print(self.data[1][@], self.datal1][1])

def det(self):
return self.data[0][@]*self.data[1]1[1] - self.datal@][1]xself.datal[1][0@]

Example: Matrix

A Brief
Introduction to
Python

class Matrix:
def __init__(self, x): # we assume x looks like [[1,2],[3,4]]
self.data = x

def show(self): # print the first row, then the second row
print(self.data[@][0], self.datalel[1])
print(self.data[1][@], self.datal1][1])

def det(self):
return self.data[0][@]*self.data[1]1[1] - self.datal@][1]xself.datal[1][0@]

def inv(self):
det = self.det()

if det == 0:

print("This matrix is singular. ")

Feturn None Example: Matrix
else:

a00 = self.datal[1][1] / det

a0l -self.data[@][1] / det

ale -self.data[1]1[0] / det
all self.datal[el[0] / det
return Matrix([[a@0, a@1], [al@, al11l)

A Brief

) Introduction to
class Matrix: Python

def __init__(self, x): # we assume x looks like [[1,2],[3,4]] Part |
self.data = x

ei Tia

def show(self): # print the first row, then the second row
print(self.data[@][0], self.datalel[1])
print(self.data[1][@], self.datal1][1])

def det(self):
return self.data[0][@]*self.data[1]1[1] - self.datal@][1]xself.datal[1][0@]

def inv(self):
det = self.det()

if det == 0:

print("This matrix is singular. ")

return None Example: Matrix
else:

a00 = self.datal[1][1] / det

a0l = -self.datal[@][1] / det

ale = -self.datal[1]1[0] / det

all = self.data[@][0] / det

return Matrix([[a@0, a@1], [al@, al11l)

def __mul__(self, other):
a00=self.datal[@][@0]xother.data[@][0] + self.data[@][1]*other.datal[1][0]
a0l=self.datal@][@]xother.data[@][1] + self.datal[@][1]*other.datal[1]1[1]
alo=self.datal1][@]xother.data[@][0] + self.datal[1][1]*other.datal[1]1[0@]
all=self.datal1][@0]xother.data[@][1] + self.datal[1][1]*other.datal1]1[1]
return Matrix([[a@0, a01], [al0, al11l)

A Brief
Introduction to
Python
Part |

Let us verify our code: -
>>> a=Matrix ([[1,2]1,[3,411)
>>> a.show()

12

3 4

>>> a.det()

=7

>>> b=a.inv()

>>> b.show()

-2.0 1.0

1.5 -0.5

>>> c=ax*b

>>> c.show()

1.0 0.0

0.0 1.0

Example: Matrix

and

>>> p = Matrix ([[1,2]1,01,2]1)
>>> p.det ()
0

>>> p.inv()
This matrix is singular.

Class: list

e list is a built-in class in Python.

e Instance of 1ist can be created by using brackets
[...].

e Class 1list contains many methods. Below are some of
them:

A Brief
Introduction to
Python
Part |

Wei T

Class: list

Class: list

e list is a built-in class in Python.

e Instance of 1ist can be created by using brackets

[...].
e Class 1list contains many methods. Below are some of
them:
Name Use
append (x) Add an item x to the end of the list.
pop() Removes and returns the last item in the list.

insert(i, x)
reverse()
sort()

Insert an item x at a position i .
Reverse the elements of the list in place.
Sort the list in place.

A Brief
Introduction to
Python
Part |

Wei Tianwen

A Brief

EXa m ple Introduction to
Python
Part

ei Tian

>>> a = [2,4,6,8]

>>> a.apppend(10) # equivalent to a + [10]

>>> a

[2, 4, 6, 8, 101

>>> a.reverse() # reverse the list in place.

>>> a

[10, 8, 6, 4, 2]

>>> a.pop() # remove the last element 2 from list
2

>>> a

[10, 8, 6, 4]

>>> a.insert(3, 7) # insert element 7 before the element at index 3
>>> a

[10, 8, 6, 7, 4]

>>> a.sort() # sort the list in place

>>> a

[4, 6, 7, 8, 10]

Class: list

Example

>>> a = [2,4,6,8]

>>> a.apppend(10) # equivalent to a + [10]

>>> a

[2, 4, 6, 8, 101

>>> a.reverse() # reverse the list in place.

>>> a

[10, 8, 6, 4, 2]

>>> a.pop() # remove the last element 2 from list
2

>>> a

[10, 8, 6, 4]

>>> a.insert(3, 7) # insert element 7 before the element at index 3
>>> a

[10, 8, 6, 7, 4]

>>> a.sort() # sort the list in place

>>> a

[4, 6, 7, 8, 10]

From the snippet above we see that a 1ist object is
mutable, which means that the state of the object can be
changed.

A Brief
Introduction to
Python
Part |

WS

iented

Class: list

Sha”OW COpy |ntro/:duBcEiecfn to
ython
Part

Wei Tia
To understand shallow copy, let us go over an example of

the deep copy:

>>> a
>>> b
>>> b
1

>>> a = 2

>>> a

2

>>> b # the value of b is not changed
1

1
a

Class: list

However, for 1ist object:

>>> a = [1,2,3]

>>> b = a

>>> b

[1, 2, 31

>>> a.append(4)

>>> b # we see that b is changed
[1, 2, 3, 4]

The copy of a list object turns out to be a shallow copy.

. A Brief
CIaSS tU ple Introduction to
Python
Part

e tuple is a built-in Python class. A tuple object can be Wei Ti
created by using parentheses (...):

>>> x=(1, 4)
>>> x

a, 8

>>> type(x)
<class 'tuple'>
>>> len(x)

2

>>> x[1]

4

Class: tuple

A Brief
CIaSS tUpIe Introduction to
Python
Part
e tuple is a built-in Python class. A tuple object can be Wei Tia

created by using parentheses (...):

>>> x=(1, 4)
>>> x

a, 8

>>> type(x)
<class 'tuple'>
>>> len(x)

2

>>> x[1]

4

e We saw that a tuple object behaves pretty much like a
list . The “only” difference between the two is that a
tuple object is immutable.

Class: tuple

>>> x[0]=5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> x + (1, 8) # this yields another tuple
2, 4, 1, 8)
>>> x # x remains unchanged
2, 4

A Brief

CIaSS d |Ct Introduction to
Python
Part

e Dictionary dict is another Python class that sees
frequent use in programs.

e To understand its usage, let us consider a simple
application: we want to store the result of a exam. The
data consists of many (name, score) pairs, something
like
('Li Lei', 88)

('Han Meimei', 91)
('Gao Hui', 97)

e We may create a list to store these data, but such
solution does not allow for fast lookup of someone's
score (one need to iterate over the entire list to find a
given name).

A Brief

e Class dict is suitable for this kind of task. An instance IO tuton to
of dict can be created by using curly braces {...3}. el

Wei Tia

Let us see a concrete example:

>>> data = {'Li Lei': 88, 'Han Meimei': 91, 'Gao Hui': 97}
{'Li Lei': 88, 'Gao Hui': 97, 'Han Meimei': 91}

>>> type(data)

<class 'dict'>

>>> len(data)

Bj

>>> datal['Li Lei'] # this allow for fast lookup

88

Class: dict

A Brief

e Class dict is suitable for this kind of task. An instance IO tuton to
of dict can be created by using curly braces {...3}. el

WWEREE

Let us see a concrete example:

>>> data = {'Li Lei': 88, 'Han Meimei': 91, 'Gao Hui': 97}
{'Li Lei': 88, 'Gao Hui': 97, 'Han Meimei': 91}

>>> type(data)

<class 'dict'>

>>> len(data)

Bj

>>> datal['Li Lei'] # this allow for fast lookup

88

e The basic syntax for creating a dict object is as
follows:

d = {keyl:valuel, key2:value2, key3:value3, ...}

Class: dict

where key and value can be anything having type
int, float or str. The update() method in dict
class allows for “extending” a given dict object.

>>> z = {'Jim Green': 82}

>>> data.update(z)

>>> datal['Jim Green']
82

	Basics
	Elementary types
	Loops
	Control flow
	Functions
	Module: math

	Object Oriented Programming
	Example: Student
	Example: Point
	Example: Matrix
	Class: list
	Class: tuple
	Class: dict

